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Based on the Kubelka–Munk two-flux model modified by the authors, which makes it possible in
one-dimensional problems to obtain exact analytical expressions for radiation fluxes at the boundary
of a turbid medium, and Kokhanovsky’s solution for the radiation flux of fluorescence, questions
are considered of modelling the spectrum of stimulated endogenous fluorescence of biological
tissues as applied to problems of noninvasive medical diagnosis. An analytical expression is
presented for the spectral distortion function, which depends on the scattering and absorption
properties of cellular biological tissues and blood. It is shown that the model spectra agree well with
the experimental data. © 2013 Optical Society of America.
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INTRODUCTION

Noninvasive in vivo, in situ laser fluorescence diagnosis
(LFD) appeared as a new scientific diagnostic specialization in
medicine around the mid-1980s.1,2 Today many scientific
groups worldwide are undertaking intense attempts to develop
LFD now at the level of practical health maintenance, includ-
ing the creation of systems to visualize the internal structures
of biological tissues, using the radiation of stimulated endog-
enous fluorescence (autofluorescence) of biological tissues,
and to visualize the structure of so-called diffusion fluores-
cence tomographs based on this.3 However, a number of prob-
lems associated with the accuracy of such measurements, the
quantitative determination of the concentration of active lumi-
nophores in the examination zone from the fluorescence inten-
sity, the interpretation of the results of the total fluorescence
spectra, etc., do not yet make it fully possible to implement
these plans.4 One serious problem in LFD is the problem of
allowing for distortions of the fluorescence spectra when
the in vivo spectrum recorded by the diagnostic device does
not always correspond to the original fluorescence spectrum
of the endogenous luminophores.5 In the overwhelming ma-
jority of actual cases, such a situation arises because the tissue
contains, besides the light-emitting luminophores, an even
greater amount of substances that intensively absorb and scat-
ter the light (for example, melanin in skin, hemoglobin in
blood, etc.).

A number of authors have repeatedly attempted to con-
struct theoretical models based on linear transport theory
(TT) to calculate the spectra of endogenous fluorescence of
biological tissues and to develop algorithms for correcting
the spectra, taking into account plethora of the tissue and cer-
tain other factors (see, for example, Refs. 6–10). In particular,
it has been shown that the fluorescence signal recorded in vivo

from biological tissue depends in general not only on the fluo-
rescence quantum yield and the concentration of fluorescent
substance in the tissue but also has a complex and substantially
nonlinear dependence on the overall optophysical properties
of the tissue, formulated in terms of TT—the scattering trans-
port coefficient μs, the absorption coefficient μa, etc.7,8

However, until recently, all such work was based on some
approximate methods or other of solving the transport
problem—the method of moments,7 the diffusion approxima-
tion,3 simplified heuristic algorithms,10 or on the basis of the
well-known statistical method of random walk of a photon in a
medium (the Monte Carlo method). Each of these approaches
has definite drawbacks. Heuristic algorithms, as a rule, are
applicable only for a chosen design of the diagnostic device.
Approximate solutions possess low accuracy, while numerical
methods like the Monte Carlo method require extensive cal-
culations and do not provide a solution in the form of a closed
analytical expression that could be easily analyzed on the
subject of how one parameter or the other affects the final
diagnostic result.

Recently A. Kokhanovsky proposed a rigorous analytical
method of solving the fluorescence problem for the classical
two-flux Kubelka–Munk (KM) approximation.11 Also, the au-
thor showed in Ref. 12 the main source of errors of the KM
model and proposed a version of their equation that makes it
possible in one-dimensional (1D) problems to obtain today ex-
act values for radiation fluxes at the boundary of a medium
(for the fluxes recorded by a device). This opens up prospects
for constructing simple analytical real-time algorithms that
make it easy to analyze the distortions of the fluorescence
spectra without resorting to complex multistep computations
and numerical methods. The goal of this article is to use a
combination of the modified two-flux KM model and
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Kokhanovsky’s solution as a basis to show the possibility of
obtaining an exact analytical expression in terms of the 1D
model for the distortion function of the fluorescence spectra,
as well as to analyze this solution for agreement with typical
experimental data.

THEORETICAL FORMULATION AND SOLUTION OF THE
PROBLEM

This section discusses the well-known general formu-
lation of the photometric 1D KM problem in a medium with
fluorescence,11 when the left boundary of the medium (x � 0)
is illuminated by an external flux of radiation Φ0 with wave-
length λ1, and two oppositely directed fluxes i�x� and j�x� with
initial wavelength λ1 propagate inside the medium along the

x axis. Because light is absorbed and scattered in the medium,
these fluxes are partially absorbed, are converted into each
other, and also cause stimulated emission of fluorescence
of the luminophores found in the medium. This causes addi-
tional similar fluorescence fluxes I�x� and J �x� with wave-
length λ2 > λ1 to be formed in the medium (Fig. 1). Some
wave properties of the radiation are neglected in this model
because of its very simple photometric (energy) formulation
and the one-dimensional calculational scheme.12

When diagnostic measurements are made from the front
(illuminated) surface of the biological tissue, a device records
the output of fluxes j�0� and J �0� from the medium. This will
interest us in the process of obtaining exact analytical solu-
tions for them. In such a formulation of the problem, the fluxes
i�x�, j�x�, I�x�, and J �x� can be derived from two connected
systems of first-order linear differential equations:

�
diλ1�x�∕dx � −β1�λ1�iλ1�x� � β2�λ1�jλ1�x�
djλ1�x�∕dx � β1�λ1�jλ1�x� − β2�λ1�iλ1�x� �1�

and
�
dI λ2�x�∕dx � −β1�λ2�Iλ2�x� � β2�λ2�J λ2�x� � F12�x�
dJ λ2�x�∕dx � β1�λ2�J λ2�x� − β2�λ2�I λ2�x� − F12�x� ;

�2�
where β1�λ� and β2�λ� are called, respectively, the attenuation
(extinction) coefficient and the radiation-backscattering coef-
ficient. They determine the optical properties of the radiation-
propagation medium (the biological tissue). According to
Ref. 12, in the modified version, unlike the standard KM
model, coefficients β1�λ� and β2�λ� are fairly complex func-
tions of the absorption coefficients μa�λ�, the density μρ of in-
homogeneities in the medium, and the Fresnel reflectance R�λ�
at the boundaries of the inhomogeneities inside the medium:

β1 � ω
μa�λ� − μρ ln�1 − R�λ�� � μρ ln�1 − ω�λ�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω�λ�2 − R�λ�2e−2μa�λ�∕μρ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω�λ�2 − R�λ�2e−2μa�λ�∕μρ

p ;

β2�λ� � R�λ�e−μa�λ�∕μρ μa�λ� − μρ ln�1 − R�λ�� � μρ ln�1 − ω�λ�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω�λ�2 − R�λ�2e−2μa�λ�∕μρ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω�λ�2 − R�λ�2e−2μa�λ�∕μρ

p ; (3)

where we introduce the notation ω�λ� � �1 − �1 − R�λ��
e−2μa�λ�∕μρ�∕2.

The mean density μρ of inhomogeneities in the medium is
determined12 from the mean number N of inhomogeneities at
which light is scattered divided by the thickness H of the sec-
tion of biological tissue under consideration (Fig. 1):

μρ � N∕H :

The systems of Eqs. (1) and (2) are connected via the
function F12�x� that describes the formation of the fluores-
cence radiation inside the medium,

F12�x� �
1

2
�iλ1�x� � jλ1�x��μaf �λ1�φ12Φ0; (4)

where μaf �λ1� is the absorption coefficient of the initial radi-
ation by the active luminophor inside the biological tissue at
wavelength λ1, and φ12 is the quantum yield of fluorescence
at wavelength λ2 when the fluorescence is excited by radiation
at wavelength λ1 (the conversion coefficient of radiation
λ1 → λ2).

The system of Eqs. (1)–(4) with the corresponding
very simple boundary conditions [left boundary (x � 0)
iλ1�0� � Φ0 and I λ2�0� � 0; right boundary (x � H)
jλ1�H� � J λ2�H� � 0] makes it possible to solve analytically
the formulated problem for the fluxes jλ1�0� and J λ2�0�.

In the case of the approximation of a semi-infinite
medium (H → ∞), the solution of the system of Eqs. (1)
for the sum of fluxes iλ1�x� and jλ1�x� can be written in the
form11

iλ1�x� � jλ1�x� � Φ0�1� r∞λ1�e−αλ1x; (5)
FIG. 1. Formulation of the problem of radiation propagation in a medium
with fluorescence. See text for explanation.
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while the solution for jλ1�0� can be written as

jλ1�0� � Φ0r∞λ1; (6)

where in the solutions we use the notation r∞λ1 �
�β2�λ1��∕�β2�λ1� � αλ1� and αλ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21�λ1� − β22�λ2�

p
.

Making the substitutions �5� → �4� → �2� and solving
the system of Eqs. (2) for J λ2�x� by the standard method of
differentiation, we get for J λ2�x� the following second-order
differential equation:

d2J λ2�x�
dx2

− αλ2
dJ λ2�x�

dx
� −�β1�λ2� � β2�λ2��F�x� −

dF�x�
dx

:

(7)

As shown by Kokhanovsky,11 Eq. (7) is easy to solve ana-
lytically for J λ2�x�. However, other boundary conditions were
used in its solution, since in his problem the medium was
simultaneously illuminated at both wavelengths λ1 and λ2,
and therefore we cannot directly use that solution here. How-
ever, in our formulation of the problem and in the case of flux
J λ2�0�, which comes out of the biological tissue from its front
surface, the solution by Kokhanovsky’s method with the
boundary conditions indicated above in the approximation
of a semi-infinite medium (H → ∞) takes the form

J λ2�0� � Φ0μaf �λ1�φ12

�1� r∞λ1��1� r∞λ2�
2�αλ1 � αλ2�

: (8)

The product Φ0μaf �λ1�φ12 determines the initial undis-
torted fluorescence spectrum. Thus, the distortion of the
spectrum is determined by coefficient γ, equal to

γ � �1� r∞λ1��1� r∞λ2�
2�αλ1 � αλ2�

; (9)

where r∞λ2 � �β2�λ2��∕�β1�λ2� � αλ2� and αλ2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21�λ2� − β22�λ2�

p
.

This coefficient is a function of the wavelength of the ra-
diation and depends in a complex way on the optical properties
β1�λ� and β2�λ� of the propagation medium of the radiation, so
that there is no simple normalization of J λ2�0� to jλ1�0� or Φ0

in Eq. (8) that makes it possible to eliminate it. Only in the
ideal case of “grey” biological tissue, if all of its optical prop-
erties are independent of wavelength (r∞λi � consti and
αλj � constj), for the two wavelengths λ2 and λ3 and two
luminophores f 1 and f 2 will the ratio of the recorded fluores-
cence signals equal the ratio of the signals for the undistorted
spectra:

J λ2�0�
J λ3�0�

� μaf 1�λ1�φ12

μaf 2�λ1�φ13

: (10)

However, in the general case of actual clinical situations,
to obtain the original (undistorted) spectrum, the value of γ
needs to be accurately known in the entire working range
of wavelengths, since the dependence of γ on the optical

properties of the medium in principle is not linear and not
monotonic.

As an illustration of this last statement, Fig. 2 shows how
coefficient γ according to Eq. (9) depends on the density μρ of
the inhomogeneities (scatterers) inside the medium, while
Fig. 3 shows how γ depends on the ratio μa�λ1�∕μρ, also
calculated from Eq. (9), using Eq. (3). Both dependences,
as we shall see, have a nonlinear character and are far from
obvious a priori.

MODELLING THE EXPERIMENTAL SPECTRA

The advantages of Eqs. (6) and (8) consist of their obvious
analytical form, which makes it easy to calculate the complete
fluorescence spectrum and spectrum of radiation backscat-
tered by biological tissue, recorded by the device in the
process of diagnosis in the entire range of wavelengths of
the recording and excitation of fluorescence. Figure 4 demon-
strates such typical experimentally recorded spectra. Spectra
that are similar in shape but with weaker resolution in wave-
length are shown in Ref. 13. In this sense, they are fairly
representative, and therefore we specially chose them as an
example, since their interpretation, as we shall see below,
can be erroneous. The spectra of Fig. 4 are recorded in vivo
on the LAKK-M diagnostic complex when fluorescence is
excited by the narrow-band UV radiation of an LED with
maximum at the line λ1 � 365 nm.14 Fluorescence region I
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FIG. 2. Parameter γ versus the density of scatterers. R�λ1� � 0.03,
R�λ2� � 0.02, μaλ1 � 4 mm−1.

.

.

.

.

.

.

.....

mm-1

mm-1

mm-1

m
m

FIG. 3. Parameter γ versus the ratio μa�λ1�∕μρ. R�λ1� � 0.03, R�λ2� � 0.02,
μρ � 50 mm−1.
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corresponds to the fluorescence of such endogenous lumino-
phores in biological tissue as elastin, collagen, keratin, NADH
(nicotinamide), etc. NADH, flavines, and lipofuscin most ac-
tively fluoresce in region II. Region III most clearly reflects
the presence of protoporphyrin IX, chlorophyll, and a number
of other substances in biological tissue by fluorescence.

To equalize the amplitudes of backscattered radiation
(the left peak in the graphs) and fluorescence radiation (in
the longer-wavelength region), attenuating optical filters made
from colored optical glass15 of type OS-13, KS-15, etc., are
used in the optical layout of the LAKK-M diagnostic system
to attenuate the recorded backscattered radiation by about a
factor of 103.14 Therefore, the graphs of Fig. 4 show reduced
amplitudes of the signals of backscattered radiation by com-
parison with their actual values, and the spectra was theoreti-
cally modelled in our paper using Eq. (8) and taking into
account the spectral response of the filter that is used. The op-
tical properties of the biological tissue were specified in the
modelling by typical values of μa�λ�, μρ, and R�λ�, taking into
account the known spectral data on the optical properties of
oxygenated and reduced hemoglobin of the blood. Different
possible values of the volume plethora Vb of the tissue and
tissue saturation of the oxyhemoglobin StO2 in the blood were
also allowed for.16 The biological tissue itself was represented
as a macrohomogeneous semi-infinite continuous light-
scattering and light-absorbing medium–matrix, in which the
blood and various luminophores are distributed uniformly
over the entire volume in different concentrations.

The results of modelling the experimental spectra shown
in Fig. 4 are presented in Fig. 5. Only the one principal maxi-
mum of protoporphyrin IX in the λ2 � 640 nm region was
modelled for porphyrin. The tissue saturation of oxyhemoglo-
bin is chosen to equal StO2 � 95% for both cases. The total
density of scatterers in the tissue is μρ � 100 mm−1. R�λ� was
calculated for each wavelength as the Fresnel reflection coef-
ficient at the water/air boundary. Both figures demonstrate
extremely good qualitative and quantitative coincidence of
the spectra for the chosen values of Vb. It is important to point

out that the small visible increase of the amplitude in spectrum
2 in Fig. 4 in the λ2 � 604 nm region can be treated as an
increased concentration of fluorescent flavines or lipofuscin
in the tissue. Such a treatment is sometimes encountered in
certain papers. However, this “increase” is only a consequence
of the absorption of the fluorescence emission by the blood.
Figure 6 shows model fluorescence spectra of biological tissue
for various values of Vb and StO2 of the blood when there is no
change in the luminophore concentration. As the plethora and
the tissue saturation of oxyhemoglobin in the blood increase, a
distortion of the true spectrum just appears in the form of an
overall nonlinear decrease of the amplitude of the recorded
signals and the appearance of characteristic hemoglobin dips
in the λ2 � 530–580 nm region.

Sometimes, when there are definite combinations of the
emission spectrum of the source, the spectral attenuation func-
tion of the optical filter in a device, and the optical properties
of a test object, it is possible to observe the appearance of cut-
outs (notches, gaps) in the backscattering spectrum of the ra-
diation. An example of an experimentally recorded cutout in a
spectrum is shown in Fig. 7 for the radiation of a He–Ne laser
when an optical cutoff filter made from KS-17 colored optical
glass is used in the device. Figure 8 shows a version of a theo-
retical model problem in which such a cutout also appears
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FIG. 4. Experimental spectra of endogenous fluorescence, recorded in vivo
on the LAKK-M diagnostic complex with fluorescence excited by the narrow-
band emission of a UV LEDwith a maximum at the line λ � 365 nm. 1—Rat-
tail skin, 2—mucous membrane of the human soft palate. I—the region where
collagen, elastin, NADH, keratin, etc., fluoresce; II–the region where flavo-
proteins and lipofuscin fluoresce; III—the region where porphyrins fluoresce.

.

.

.

.

.

Wavelength, nm

Si
gn

al
 a

m
pl

itu
de

, r
el

. u
ni

ts

FIG. 5. The results of modelling the experimental spectra shown in Fig. 4.
Only one principal maximum of protoporphyrin IX was modelled for por-
phyrin in the region λ � 640 nm, StO2 � 95%. The total density of scatterers
in the tissue was μρ � 100 mm−1.
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FIG. 6. Dependence of the fluorescence spectra on the volume plethora of
the tissue in the examination zone and the degree of tissue saturation of
oxyhemoglobin.
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according to the results of the computations. Thus, a compari-
son of the experimental and theoretically computed fluores-
cence spectra and the spectra of backscattered radiation of
the fluorescence-excitation source shows that the proposed
model and the algorithm for calculating the spectra can de-
scribe the actual situations fairly adequately.

CONCLUSION

An analytically rigorous solution of the problem of theo-
retically modelling the excited endogenous fluorescence of
biological tissues as applied to problems of noninvasive medi-
cal diagnosis has been proposed in this paper in terms of the
two-flux Kubelka–Munk model and Kokhanovsky’s solution
for fluorescence radiation. An adequate description of the ex-
perimentally recorded in vivo fluorescence spectra of actual
biological tissues has been demonstrated. The resulting solu-
tion of Eq. (9) for the distortion function of the spectra shows
that this function (coefficient γ) in principle nonlinearly and
nonmonotonically depends on the optical properties of the
radiation-recording medium. Therefore, in the general case of
actual clinical diagnostic examinations for obtaining the initial
(undistorted) spectrum, an accurate value of γ is necessary in
the entire working range of wavelengths for each patient and

each of its regions of examination. Accordingly, all studies
oriented to the solution of the problem of quantitatively
processing fluorescence spectra in practical medicine must to-
day be directed to methods of determining γ and the errors of
these methods.
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FIG. 7. Experimentally recorded appearance of a cutout in the backscattering
spectrum of the radiation of a He–Ne laser.
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FIG. 8. Modelling of a cutout. The filter parameters correspond to KS-17
colored optical glass according to GOST 9411-75.15
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