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Аннотация

Работа посвящена исследованию оптических свойств фторопласта Ф-4 (политетрафторэтилен)
как базового светорассеивающего материала для создания твердых оптических фантомов кожи.
Методами спектроскопии обратного рассеяния в видимом диапазоне длин волн (400 – 800 нм)
исследовано 3 образца фторопласта толщиной 3, 5 и 10 мм. Получены коэффициент полного диф-
фузного отражения и относительный обратно-рассеянный поток, зарегистрированный на различных
расстояниях от источника света.
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Abstract

The work is devoted to the study of optical properties of fluoroplastic F-4 (polytetrafluoroethylene) as
a basic light-scattering material for optical skin phantoms. Three samples of fluoroplastic with thicknesses
of 3, 5 and 10 mm were studied using backscattering spectroscopy methods in the visible wavelength
range (400–800 nm). The coefficient of total diffuse reflection and the relative backscattered flux recorded
at different distances from the light source were obtained.
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Введение
Оптические фантомы — это изделия, имитирующие анатомическое строение и оптические свой-

ства (коэффициенты поглощения 𝜇𝑎 и рассеяния 𝜇𝑠) тканей человека [1, 2]. Если фантомы обладают
известными и контролируемыми оптическими свойствами, на их основе возможно создание рабочих
имитационных мер – средств измерений, хранящих и воспроизводящих единицы измеряемых величин.
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Одной из задач при создании тканевых фантомов является поиск подходящих материалов с
заданными свойствами. Среди свойств таких материалов можно отметить нетоксичность, химическую
стойкость, стабильность оптических свойств во времени, а также в разных условиях окружающих
температур и влажности воздуха, дешевизну производства, близость оптических свойств к оптическим
свойствам биотканей и т.д.

Практически всем из обозначенных качеств удовлетворяет фторопласт Ф-4 по ГОСТ 10007-80,
который часто применяется в исследованиях в нашей лаборатории (см., например, [3–5]). Он обладает
светорассеивающими свойствами, близкими аналогичным свойствам обескровленных биотканей. Однако
в доступной литературе мало публикаций, посвященных описанию оптических свойств фторопласта Ф-4
применительно к задачам создания оптических фантомов тканей и органов человека и животных [6, 7],
а их выводы оказываются противоречивы. Настоящая работа посвящена уточнению оптических свойств
этого материала и призвана частично восполнить указанный пробел.

В исследовании использовались методы спектроскопии обратного рассеяния в диапазоне длин волн
400 – 800 нм. В результате получены коэффициент полного диффузного отражения как функция длины
волны и относительный обратно-рассеянный поток, зарегистрированный на различных расстояниях от
источника света, что актуально для разных оптоволоконных медицинских диагностических систем.

Материалы и методы
В исследовании было использовано 3 образца фторопласта Ф-4 по ГОСТ 10007-80. Образцы

представляли собой диски диаметром 5 см и толщиной соответственно 3, 5 и 10 мм.

Измерения коэффициента полного диффузного отражения (в полусферу) проводились при
помощи аттестованного и метрологически поверенного спектрофотометра Specord M40 с интегрирующей
сферой диффузного отражения на базе ФГБУ ВНИИОФИ (г. Москва, Россия). Для каждого образца
было проведено по 5 измерений, после чего данные усреднялись.

Для определения спектров обратно-рассеянного излучения при различных расстояниях между
излучающим и приемным волокнами (SDD) использовался комплекс «Мультиком» [8, 9]. В состав
комплекса входят лазеры с разными длинами волн от УФ до красного диапазона спектра, широкополос-
ные ксеноновые источники белого света и спектрометр. Доставка излучения к образцу и регистрация
обратно рассеянного от образца излучения происходят с помощью оптических волокон. Калибро-
ванная шкала спектрометра [9, 10] позволяла получать спектральную плотность потока излучения
(Вт/нм) диффузно-отраженного (обратно-рассеянного) от образцов излучения. При этом учитывалась
спектральная чувствительность CMOS-матрицы спектрометра [11] (рис. 1).

Рисунок 1 – Аппроксимированная полиномом зависимость чувствительности CMOS-матрицы спектрометра от
длины волны
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Относительный обратно-рассеянный поток 𝐹 определялся в диапазоне длин волн 400 – 800 нм как
отношение спектров обратно-рассеянного излучения, измеренных в единицах спектральной плотности
потока излучения (Вт/нм), к спектру падающего на образцы излучения (также в единицах Вт/нм). В
качестве источника широкополосного излучения использовалась 100-ваттная ксеноновая лампа. Для
облучения образцов и регистрации излучения с их поверхности использовались оптические волокна с
диаметром 400 мкм. Значения SDD менялись в диапазоне 8 – 14 мм с шагом 1 мм.

Для определения мощности падающего на образец излучения ксеноновой лампы проводилась
его калибровка путем нормировки спектра этого излучения на спектр излучения лазера с длиной
волны 515 нм с известной мощностью. В ходе процедуры калибровки, в целом схожей с калибровкой
шкалы спектрометра, проведённой в [9,10] , использовался стандарт отражения Spectralon (Labsphere
Ltd., New Hampshire, US). Стандарт характеризуется ламбертовским отражением с коэффициентом
отражения 0.75 в широком диапазоне длин волн 250 – 2500 нм. При калибровке стандарт Spectralon
располагался на расстоянии 1 м от приемного волокна, а излучающее волокно располагалась вблизи
стандарта. На рис. 2 приведено сравнение спектров лазера и широкополосного излучения лампы после
калибровки.

Рисунок 2 – Спектры излучения лазера и ксеноновой лампы

Результаты и обсуждение
На рис. 3 приведены спектры полного диффузного отражения трех образцов. Наибольшим

отражением образцы характеризуются в сине-зеленой области, наименьшим – в красной и ближней
ИК областях спектра. Образец с наибольшей толщиной закономерно демонстрирует более сильное
отражение за счет меньшего пропускания. Также для примера на рис. 3 приведен спектр диффузного
отражения кожи предплечья здорового добровольца из [12]. В целом характер зависимости диффузного
отражения от длины волны оказывается схож для фторопласта и кожи за исключением области длин
волн 500 – 600 нм, где в случае кожи присутствуют полосы поглощения крови. Фторопласт же призван
моделировать обескровленную ткань.

На рис. 4а в качестве примера приведены спектры обратно-рассеянного потока 𝐹 от образца
толщиной 10 мм, измеренные экспериментально при различных расстояниях SDD, в видимой области
длин волн. Видно, что обратно-рассеянный поток растет с увеличением длины волны. Такое поведение,
по-видимому, связано с геометрией эксперимента: «детектор» расположен на расстоянии от «источника».
В этом случае до приемного волокна в основном доходит более длинноволновое излучение. Более
короткие волны за счет большего рассеяния выходят из образца непосредственно в окрестности области
расположения источника. Рис. 4б демонстрирует зависимости 𝐹 от SDD для некоторых длин волн
из рис. 4а в логарифмическом масштабе. Линейность зависимостей 𝐹 (SDD) на рис. 4б говорит об
экспоненциальном характере затухания света в образце при его распространении от источника до
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приемника.

Рисунок 3 – Экспериментально измеренные зависимости коэффициента полного диффузного отражения от
длины волны: для трех образцов фторопласта (точки, соединенные сплошной линией) и для кожи из [12]

(пунктирная линия)

а) б)

Рис. 4: а) Экспериментально измеренные спектры относительного обратно-рассеянного потока 𝐹 для образца
толщиной 10 мм при различных значениях расстояний источник-детектор (SDD); б) зависимости 𝐹 от SDD для

трех длин волн (400, 600 и 800 нм)

Заключение
Экспериментально исследованы светорассеивающие свойства в диапазоне длин волн 400 – 800 нм

фторопласта Ф-4 как материала для оптического фантома кожи. В частности, измерены коэффициент
полного диффузного отражения и относительный обратно-рассеянный поток оптического излучения на
разных расстояниях между источником света и детектором. Показано сходство оптических свойств
Ф-4 и обескровленной кожи, что позволяет обосновать использование материала Ф-4 при создании
оптических фантомов кожи для оптических медицинских диагностических технологий.
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